

Flexible Tubular Alkaline Fuel Cells

Michael C. Kimble and Thomas J. Blakley Reactive Innovations, LLC 2 Park Drive, Suite 4 Westford, MA 01886

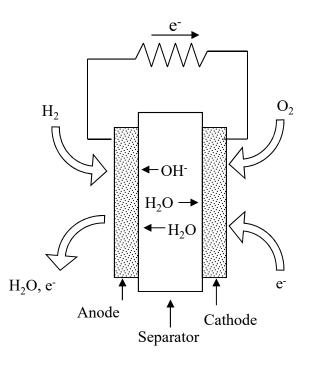
Presented at the Northeast Regional Meeting of the American Chemical Society Burlington, VT

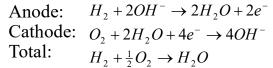
July 1, 2008

Prelude to Tubular Alkaline Fuel Cells

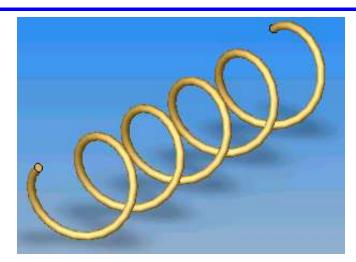
- Flameless Ration Heaters (FRH) are used to heat Meals, Ready to Eat (MRE) and Unitized Group Ration (UGR)
 - Upon activating with water, they release heat, steam, and hydrogen
- Need to
 - Capture or react the hydrogen to avoid explosive limits from being reached
 - Mitigate actual and perceived safety concerns with hydrogen presence
- Challenges:
 - Cost needs to be comparable with \$10/UGR heater
 - Must destroy a lot of hydrogen (11.3 Ft³) in a short time (30-45 min)
 - Must be lightweight and compact
 - Readily integratable with UGR heaters

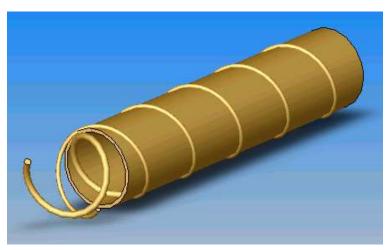
The flameless ration heaters work by reacting water with Mg to release a mixture of steam and hydrogen gas

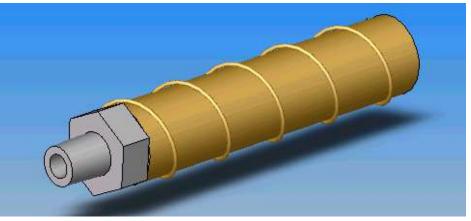

UGR Activation



Alkaline Fuel Cell Approach Minimizes Cost


- Presently used on-board the Space Shuttle
- Extensions to terrestrial applications difficult
 - Electrolyte leakage, corrosion, and carbonate buildup limit lifetime and increase cost
- However, for the UGR application
 - Longevity not required, only 30 min
 - Electrolyte can be stored dry until activated with water
 - Negligible CO₂ adsorption in 30 min
 - Inexpensive materials may be used for the single use application


FCord[™]: A Tubular Alkaline Fuel Cell That Produces Heat Along the Cell


1. Coil Anode Ni Wire

2. Wrap With Separator and KOH

3. Wrap Cathode Ni:Cr Wire

4. Insert H2 Fitting and Connect Electrodes

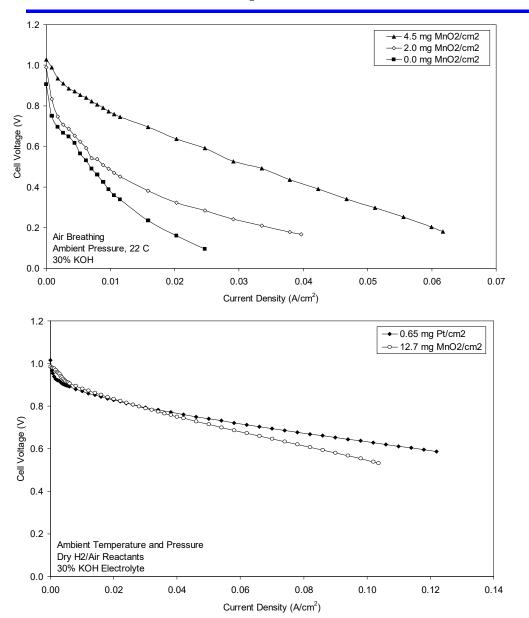
Design for Manufacturability

- Fuel cell development philosophy focused on being able to manufacture the tubular alkaline fuel cell (FCord)
- Low cost, textile manufacturing process envisioned for the tubular AFC
- Example picture of multiple fiberglass strands being wound around a mandrel – our model for the tubular AFC!

Compact and Flexible Tubular Alkaline Fuel Cells

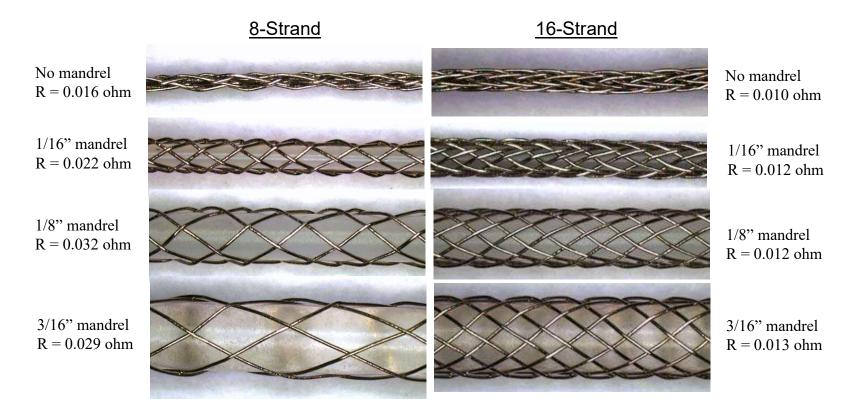
- Some technical challenges
 - Air breathing cathode
 - Flexible and conductive electrodes and current collectors
 - No radial hydrogen leakage
 - Low cost components
 - Porous Ni, MnO₂, fiberglass

Patent Pending

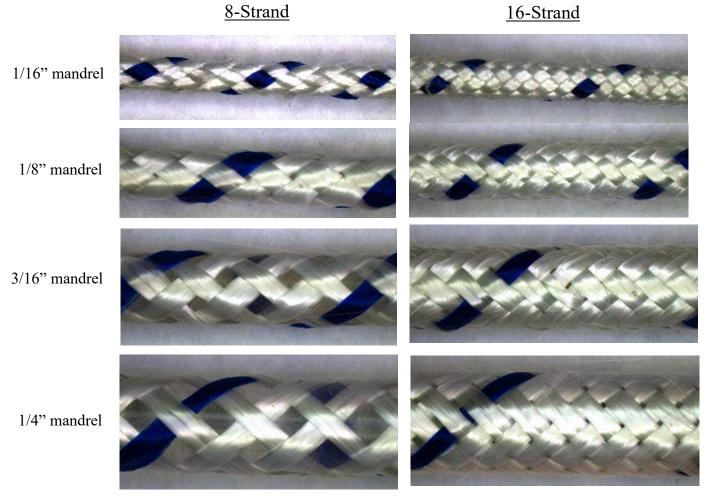


Catalyst Development

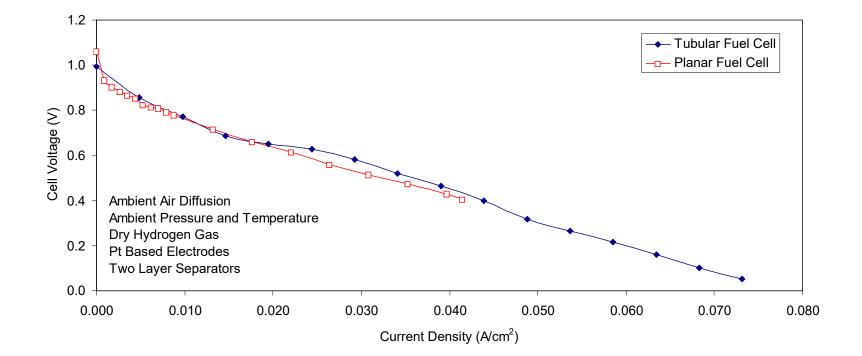
- Requirements
 - Porous nickel (Raney Ni[™]) based anode catalyst for low cost
 - MnO₂ based cathode catalyst for low cost
 - Paintable or sprayable inks onto nickel mesh or wire
 - Electrode must be able to flex without catalyst delaminating
 - Target electrochemical performance point of 0.5 A/cm² at 0.1 V
- Anode
 - Operation with dry to saturated hydrogen (85-95 C) on the interior of the tubular fuel cell
- Cathode
 - Operation with ambient air diffusion to the exterior surface of the tubular fuel cell


Air Breathing MnO₂ Based Cathodes Show Competitive Performance to Platinum

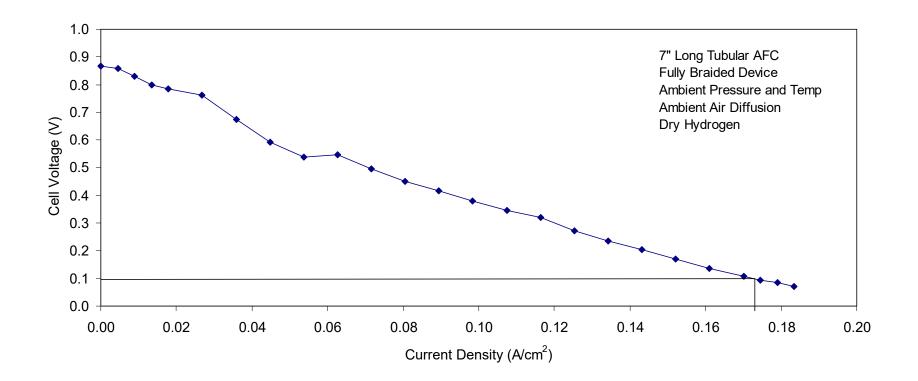
- Alkaline fuel cell performance at ambient pressure and temperature
- Ambient air breathing cathodes
- Higher MnO₂ loadings increase alkaline fuel cell performance
- Competitive performance to platinum based cathode


Braided Current Collector Technology Developed for Variable Sized Mandrels and Strand Count

Braided 10 mil Ni wire gives acceptable voltage drop over 10 cm length



Braided Fiberglass Separator Developed for Variable Sized Mandrels and Strand Count



Double Layer Braided Separator in Tubular Fuel Cells Show Comparable Performance to Planar Cells

7" Long Fully Braided Tubular AFC Shows 0.17 A/cm² at 0.1 V

Material Costs for Measured and Improved Performance

Measured Data to Date		
Quantity	Value	
H2 mol produced	10.18	
Rate (H2 mol/min)	0.226	
Current (amps)	727.4	
Amps/tray (4)	181.8	
Cur Den (A/cm2)	0.10	
@ voltage	0.20	
Area (cm2)/tray	1818.4	
Tube Diameter (in)	0.125	
Tube Length (cm)/tray	1823.0	
Tube Length (ft)/tray	59.8	
Length/RUSHM (cm)	7292.1	
Area/RUSHM (cm2)	7273.6	

Measured Data to Date	
Quantity	Value
H2 mol produced	10.18
Rate (H2 mol/min)	0.226
Current (amps)	727.4
Amps/tray (4)	181.8
Cur Den (A/cm2)	0.50
@ voltage	0.30
Area (cm2)/tray	363.7
Tube Diameter (in)	0.125
Tube Length (cm)/tray	364.6
Tube Length (ft)/tray	12.0
Length/RUSHM (cm)	1458.4
Area/RUSHM (cm2)	1454.7

Expected Performance Improvements		
Quantity	Value	
H2 mol produced	10.18	
Rate (H2 mol/min)	0.226	
Current (amps)	727.4	
Amps/tray (4)	181.8	
Cur Den (A/cm2)	1.00	
@ voltage	0.30	
Area (cm2)/tray	181.8	
Tube Diameter (in)	0.125	
Tube Length (cm)/tray	182.3	
Tube Length (ft)/tray	6.0	
Length/RUSHM (cm)	729.2	
Area/RUSHM (cm2)	727.4	

Component	Material Cost (\$)
Anode Cur. Col.	54.81
Anode Catalyst	43.71
Separator	4.05
Cathode Catalyst	2.11
Cathode Cur. Col.	78.38
Total Cost/RUSHM	183.06

Component	Material Cost (\$)
Anode Cur. Col.	10.96
Anode Catalyst	8.74
Separator	0.81
Cathode Catalyst	0.42
Cathode Cur. Col.	15.68
Total Cost/RUSHM	36.61

Component	Material Cost (\$)
Anode Cur. Col.	5.48
Anode Catalyst	4.37
Separator	0.41
Cathode Catalyst	0.21
Cathode Cur. Col.	7.84
Total Cost/RUSHM	18.31

Tubular Alkaline Fuel Cell Summary

- Paintable electrodes developed for anode and cathode based on low cost materials
 - Measured performance of 0.1 to 0.2 A/cm² at 0.1 V with near term targets of 0.5 A/cm² at 0.1 V
 - Current collectors developed based on braided wire with low electrical resistance that are flexible
- Separator developed based on double layer braiding
 - Impermeable to hydrogen gas when wetted
 - Shows similar ionic conductivity when re-wetted to 30% KOH
- FRH integration examined to identify permissable pressures and temperatures in the tubular AFC
 - Tubular cell size needs to keep FRH back-pressure less than 2.0 psig at 100 C
 - Rapid temperature rise in tubular AFC on the order of seconds once FRH activated
- Tubular fuel cell showing performance at 0.2 A/cm² at 0.1 V
 - Reproducible manufacturing process developed for tubular cell
- Economic cost assessment of materials conducted
 - Present cost of \$183-\$37/UGR with today's measured performance

 This material is based upon work supported by the US Army Research, Development and Engineering Center under Contract No. W911QY-05-C-0014

